3E current sensor

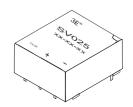
Датчик напряжения SV025-20

Построен по принципу преобразования входного тока, пропорционального приложенному напряжению (постоянному, переменному, импульсному и т.д.) в пропорциональный выходной ток с гальванической развязкой между первичной (силовой) и вторичной (измерительной) цепями.

Электрические параметры

\mathbf{I}_{PN}	Номинальный входной	ток, эфф.знач.	20		мА
\mathbf{I}_{P}	Диапазон преобразования		0 ± 4	0 ± 40	
$\mathbf{R}_{\scriptscriptstyle{\mathrm{M}}}$	Величина нагрузочного	о резистора	$\mathbf{R}_{_{\mathrm{M}\mathrm{min}}}$	$\mathbf{R}_{\text{M max}}$	
	при ± 12 V	при ± 20 мА _{мах}	30	190	Ом
		при ± 40 мА _{мах}	30	100	Ом
	при ± 15 V	при ± 20 мА _{мах}	50	350	Ом
		при ± 40 мА _{мах}	50	170	Ом
$I_{\rm SN}$	Номинальный аналого	вый выходной ток	25		мА
$\mathbf{K}_{_{\mathrm{N}}}$	Коэффициент преобразования		1250 :	1000	
\mathbf{V}_{c}	Напряжение питания (± 5 %)		± 12 .	± 12 15	
$I_{\rm C}$	Ток потребления		10 (@ ±	15 B) + I _S	мА
\mathbf{V}_{d}	Электрическая прочнос	сть изоляции, 50 Гц, 1 мин	4.1		κВ

Точностно-динамические характеристики


X	Точность преобразования при I_{PN} , $T_A = 25^{\circ}C$		± 0.8		%
$\mathbf{\epsilon}_{\scriptscriptstyle extsf{L}}$	Нелинейность		< 0.2		%
			Средн	Макс	
I_{\circ}	Начальный выходной ток при $I_P = 0$, $T_A = 25^{\circ}$ C			± 0.15	мА
I_{OT}	Температурный дрейф I_{\odot} - 40°С + 85°	C	± 0.25	± 0.50	mΑ
	- 50°C 40°	C.	± 0.50	± 0.80	mΑ
$\mathbf{t}_{_{\mathrm{r}}}$	Время задержки при 90 % от $ {f I}_{{}_{{\sf P}{\sf max}}} $		15		мкС

Справочные данные

\mathbf{T}_{A}	Рабочая температура	- 50 + 85	°C
\mathbf{T}_{s}	Температура хранения	- 50 + 90	°C
$R_{_{P}}$	Входное внутреннее сопротивление при $T_{_{\rm A}}$ = 85°C	135	Ом
\mathbf{R}_{s}	Выходное внутреннее сопротивление при $T_{_{\rm A}}$ = 85°C	117	Ом
m	Bec	22	Γ

Примечания: 1) Между первичной и вторичной цепями

 $I_{PN} = 20 \text{ MA}$ $V_{PN} = 10..1500B$

Отличительные особенности

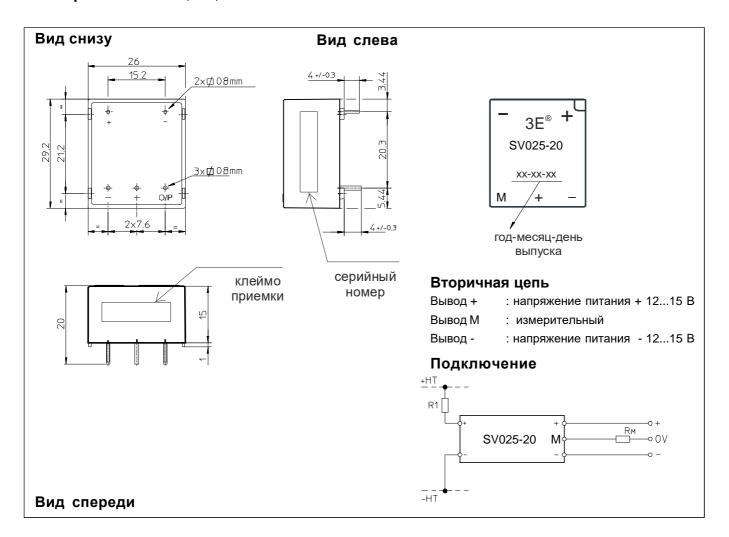
- Компенсационный датчик на эффекте Холла
- Изолирующий пластиковый негорючий корпус.
- I_p = 20 MA • V_d = 4.1 KB ¹⁾ • T_A = -50°C ... + 85°C.

Преимущества

- Отличная точность
- Хорошая линейность
- Очень низкий температурный дрейф
- Оптимальное время задержки
- Широкий частотный диапазон
- Высокая помехозащищенность
- Высокая перегрузочная способность.

Применение

- Частотно-регулируемый привод переменного тока
- Преобразователи для привода постоянного тока
- Системы управления работой аккумуляторных батарей
- Источники бесперебойного питания
- Программируемые источники питания
- Источники питания для сварочных агрегатов.


Изготовитель фирма 3E Sensor Поставщик -ООО "Лаборатория ДТиН"

200920/1

Internet: www.ldtn.ru

3E current sensor

Размеры SV025-20 (в мм)

Механические характеристики

Общий допуск

± 0.2 мм

• Подключение первичной цепи

2 вывода 0.8 х 0.8 мм

• Подключение вторичной цепи

3 вывода 0.8 х 0.8 мм

• Рекомендованные отверстия в плате

Ø 1.2 мм

Примечания

- $\mathbf{I}_{_{\mathrm{S}}}$ положителен, когда $\mathbf{V}_{_{\mathrm{P}}}$ приложено к выводу +
- Не допускается изгиб выводов датчика