

Датчик тока SMC142T-1000A

 $I_{PN} = 1000 A$

Для электронного преобразования токов: постоянного, переменного, импульсного и т.д. в пропорциональный выходной ток с гальванической развязкой между первичной(силовой) и вторичной (измерительной) цепями.

91	Электрические параметры					
I _{PN}	Номинальный входной ток, эфф.знач.	1000		Α		
I _P	Диапазон преобразования		0 ± 2500			
\mathbf{R}_{M}	Величина нагрузочного резистора, при $\mathbf{T}_{_{\! A}}$ = 70°C	$\boldsymbol{R}_{_{\text{M min}}}$	$\mathbf{R}_{\mathrm{Mmax}}$			
	питание \pm 15.0 В при \pm 1000 А _{мах}	0	2	Ом		
	при ± 1400 A _{мах}	0	6	Ом		
	питание ± 24.0 В при ± 1000 А _{мах}	0	70	Ом		
	при ± 2500 A _{max}	0	2	Ом		
I_{SN}	Номинальный аналоговый выходной ток	200		мА		
K _N	Коэффициент преобразования		0			
V _C	Напряжение питания (± 5 %)		24	В		
I _c	Ток потребления		$24(@ \pm 24B) + I_s$			
\mathbf{V}_{d}	Электрическая прочность изоляции, 50 Гц, 1 мин 12,0			кВ		

Точностно-динамические характеристики

\mathbf{x}_{G}	Точность преобразования при Нелинейность	\mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}C$	± 0.5 < 0.1		% %
	Начальный выходной ток при I ,	- 0 T - 25°C	Средн + 0.1	Макс ± 0.25	мА
о I _{ОТ}	Температурный дрейф I _о	- 40°C + 85°C	± 0.1	± 0.8	мА
ŧ	Время задержки 1) при 90 % от	- 50°C 40°C	< 1	± 1.2	мА мкс
ر di/dt	Скорость нарастания входного		> 100		А/мкс
f	Частотный диапазон (- 1 dB)		0 10	0	кГц

Справочные данные

$T_{_{A}}$	Рабочая температура		- 50 + 85	°C
T_s	Температура хранения		- 60 + 90	°C
\mathbf{R}_{s}	Выходное сопротивление при	$T_A = 70^{\circ}C$	44	Ом
m	Вес (не более)		560	Γ
	Стандарты		ДТСА.420600.002 ТУ	

Сертификат об утверждении типа средств измерений

1) При скорости нарастания входного тока 100 А/мкС

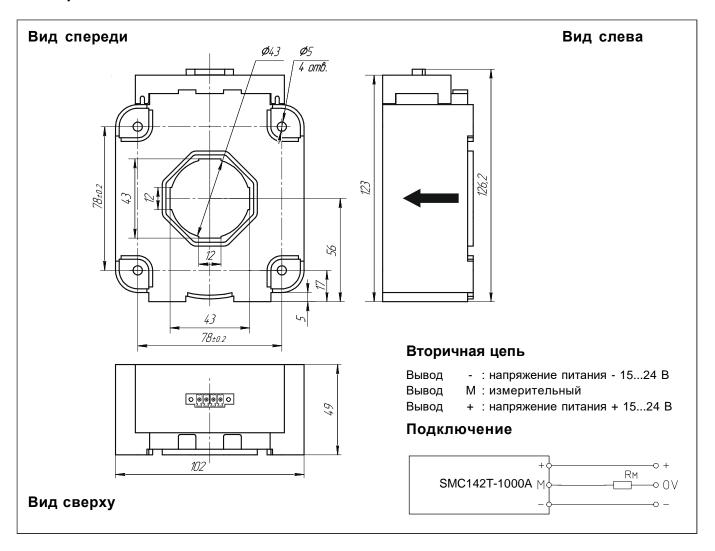
Отличительные особенности

- Компенсационный датчик на эффекте Холла
- Изолирующий пластиковый негорючий корпус.
- $T_{\Delta} = -50^{\circ}C ... + 85^{\circ}C$
- $V_{CMAX} = 30B$, длительность до 5 с.

Преимущества

- Отличная точность
- Хорошая линейность
- Низкий температурный дрейф
- Оптимальное время задержки
- Широкий частотный диапазон
- Высокая помехозащищенность
- Высокая перегрузочная способность.

Применение


- Частотно-регулируемый привод переменного тока
- Преобразователи для привода постоянного тока
- Системы управления работой аккумуляторных батарей
- Источники бесперебойного питания
- Программируемые источники питания
- Источники питания для сварочных агрегатов.

260425/1

Примечание:

№ 83551-21

Размеры SMC142T-1000A

Механические характеристики

Общий допуск ± 0.5 мм
Крепление отв. Ø 5 мм
Подключение первичной цепи
Ф 43 мм
МСV 1,5/4-GF-3,81

Партия	Nº	
•	_	

Дата отгрузки __

Примечания

- ${f I}_{_{\rm S}}$ положителен, когда ${f I}_{_{\rm P}}$ протекает в направлении, указанном стрелкой на корпусе.
- Температура первичной шины не должна превышать 100 °C.
- Наилучшие динамические характеристики (di/dt и время задержки) достигаются при полном заполнении неизолированной первичной шиной входного отверстия датчика.
- Разъем МС 1,5/ 4-STF-3,81 входит в комплект поставки.